

UNIVERSITY FOUNDATION PROGRAMME CHEMISTRY SPECIFICATION

PREPARING STUDENTS FOR UNIVERSITY SUCCESS

FOR TEACHING FROM 2021

CATS UFP

CATS UFP is a Level 3 course, specifically designed to help international students move successfully from secondary education to a UK University.

The CATS UFP is delivered over 420 directed hours of teaching and learning, over 3 subjects, and utilises a rigorous style of study, within a pastorally supportive and culturally stimulating environment that enables students' learning to develop and progress successfully. Students can access a variety of assessment methods that are common in UK Universities, such as portfolios, presentations academic posters, and examinations combined with content specifically designed to build on prior learning from courses around the world.

English for Academic purposes is an essential part of CATS UFP, and all students will take an English course that supports their learning and prepares them for university life, as well as having access to many extracurricular activities that further reinforce their use of English. Assessment design within each subject carefully focuses on subject knowledge and skills, rather than the ability to cope with English as a second language.

CATS Colleges provide a stimulating intellectual and diverse environment with small classes; thus, enabling the best learning to happen. With CATS UFP, all learning happens with teachers who have excellent subject knowledge and are expert in creating a positive learning environment for students from a wide range of backgrounds.

CATS UFP has a successful record of accomplishment and is highly respected by UK universities. With this qualification, students with 12 years of schooling from their own country can make the progression that they want, to a wide range of UK universities, including those ranked most highly for both research and teaching. CATS UFP has strong advocates in its alumni, who display what a CATS UFP qualification can give them. Graduates report that they feel very well prepared for university study; often, better prepared than students from other Level 3 programmes. Universities have confirmed this, through testimonials and through extensive consultation with university based External Examiners it has gained excellent credibility with UK universities.

WHY CHOOSE UFP CHEMISTRY

Dynamic and Engaging Content

CATS College has a long history and proven track record of providing high quality, successful Chemistry UFP qualifications that we have continued to improve through teacher and student feedback, operational experience and by working closely with universities and the wider academic community.

The course teaches students theories and experimental techniques to support the learning of the theoretical structure of the atom to the complex organic molecules that are found in many materials and biological systems.

Our content is designed to engage students through topics and issues that are relevant in society.

Real Life Skills

Students will develop the knowledge and skills needed to analyse data, think critically about issues and make informed decisions – all skills that are needed for further study and employment.

Assessment Success

Chemistry UFP involves a blended learning approach to assessing students that enables them to access content and demonstrate a wide range of skills and abilities. There are 2 methods of assessment-coursework and examination papers.

Our coursework uses a variety of assessment styles including group and individual presentations, reflection, citing sources and essays. Topics are contemporary, engaging and developed specifically for international students.

Our examination papers use a variety of assessment styles including multiple choice, short answer, extended answer, data response, essay and case studies so that students feel more confident and engage with the questions.

Real life case studies will be used wherever possible to make it easier for students to relate to and apply their knowledge and skills developed throughout the course.

Sensitivity towards international students

The Chemistry UFP course has been designed to address the challenges that international students will face when studying a British qualification. Coursework and examination assessments are tailor made to ensure students can access, understand, progress and achieve to the best of their abilities.

AIMS OF THE COURSE

Enable students

CATS College wants to enable students to:

- Develop their interest in, and enthusiasm for Chemistry, including developing an interest in • further study and careers in Chemistry.
- Appreciate how society makes decisions about scientific issues and how the sciences contribute to the success of the economy and society.
- Develop and demonstrate a deeper appreciation of the skills, knowledge and • understanding of how science works.
- Develop essential knowledge and understanding of different areas of Chemistry and how • they relate to each other.

* Contains public sector information licensed under the Open Government Licence v3.0

HARNESS KEY SKILLS

Students taking this course will be encouraged to develop into independent learners with the ability to think critically, understand the key importance of research and presentational skills. The course covers these key skills in the following ways:

Reasoning and Critical Thinking:

- Use problem-solving skills to interpret and consider situations where more than one approach is possible.
- Select, organise and communicate relevant information in a variety of forms.
- Use mathematical techniques in a multitude of situations applicable to the real world.
- Analyse, explain and evaluate their own and others' experimental and investigative results in a variety of ways.

Independent Learning:

- Organise a student's own learning through management of time and material.
- Work on own initiative to prioritise tasks.
- Work independently to support understanding of material.
- Carry out self-directed learning tasks.

Research Skills:

- Research an area of interest and find data suitable to analyse, statistically if necessary.
- Ensure all research is referenced and not plagiarised.
- Use ICT to develop information literacy skills, to communicate and collaborate with others.

Presentational Skills:

- Systematic documentation of findings and analysis.
- Use of word processing and other forms of ICT for communication.
- Organise information clearly and coherently, using specialist vocabulary where appropriate.

PRIOR KNOWLEDGE

Suggested Prior Subject Specific Topic Knowledge

For most students some previous exposure to formal Chemistry education would be necessary. Specific topic details are not expected, but students who have studied an equivalent national science qualification (for example a Level 1 or 2 qualification, such as GCSE) would be well prepared for UFP Chemistry.

However, experience shows that students will be able to study UFP Chemistry successfully with no background in, or previous knowledge of, Chemistry - in this case their approach to learning will be significant in their need to meet the requirements and pace of the course.

The table below shows prior learning in Chemistry that is recommended to allow the building of the more complex ideas in UFP Chemistry.

Торіс	Details	
Particulate nature of matter	 Different forms of matter (pure substances [elements, compounds] and mixtures [heterogeneous, homogeneous]); the properties of different states of matter and their interconversion; understanding of how a particular structure relates to the separation and motion of particles. 	
Atomic structure	• Description of the particles within an atom; definition of atomic number and mass number; explanation of the origin of isotopes; the electronic configurations of atoms; the building-up of electrons in shells.	
Periodic Table	 Relationship to electronic configurations of atoms; significance of the electronic structures of the noble gases; importance of outer shell electrons; periodic trends and the prediction of chemical properties for elements in different groups. 	
Bonding and structure	• Formation of ions resulting in ionic bonding; lattice structures in ionic compounds; covalent bonding involving shared pairs of electrons; single and multiple covalent bonds; shapes of simple covalent molecules; comparison of physical properties (volatility, solubility, melting and boiling point, electrical conductivity) for ionic and covalent compounds; metallic bonding represented as lattice of positive ions in a sea of mobile electrons; explanation of electrical conductivity and malleability of metals.	
Quantitative chemistry	Symbols of the elements; formulae of simple compounds; determination of the formula of an ionic compound from the charges on the ions; writing balanced equations with state symbols; the mole concept; relative masses (atomic, molecular and formula); quantitative calculations for reactions involving solids, solutions and gases.	
Chemical reactions	Types of reaction (precipitation, displacement, acid-base, redox); chemical energetics including the relationship between exothermic/endothermic reactions and bond making/breaking; rate	

	of chemical change including factors that affect the speed of a chemical reaction; extent of a chemical reaction and reversibility.
Organic chemistry	Relationship between names and formulae of organic molecules; structures of simple organic molecules; physical and chemical properties of simple organic molecules (such as alkanes, alkenes and alcohols); polymerisation and synthetic polymers; organic molecules and fuels from petroleum, natural gas and coal.
Practical skills	Knowledge of common apparatus used in experimental work, including apparatus for measurement of time, temperature, mass and volume; techniques for separation (filtration, crystallisation, or distillation); preparation of inorganic salts; techniques for quantitative analysis (titration); techniques for qualitative identification of inorganic compounds.

SUGGESTED PRIOR MATHEMATICAL KNOWLEDGE

In order to access all aspects of the Chemistry UFP course, students need to have acquired competence in the appropriate areas of Mathematics. The required skills are:

Arithmetic and numerical computations.

Making use of appropriate units in calculations, expressing answers in decimal and standard form. Using ratios, percentage and fractions.

Handling data by using the correct number of significant figures.

Finding means and constructing frequency tables, bar charts and histograms.

Using calculators to find exponential, power and logarithmic functions.

Order of magnitude calculations.

Changing the subject of an equation and solving equations.

Determining slope (gradient) and intercept of a graph.

In addition, the calculation of area and circumference of circles and volumes and areas of spheres, rectangular block and cylinders should be known.

SUBJECT CONTENT

Examinable Content Overview

The topics in the table below will be assessed through the final examinations.

There is also one self-study topic where students are expected to study the topic themselves with little teacher guidance (an expectation on university courses) - it is highlighted in the syllabus and below in <mark>yellow.</mark>

There are 4 Modules.

mere dre 4 modules.			
Module 1 – Foundations of Chemistry			
1.1 Atomic Structure, Isotopes & Relative Masses	Atoms		
1.2 Compounds, Formulae and Equations	Compounds & Equations		
1.3 Mole Calculations	Quantitative Chemistry		
1.4 Acids & Bases and Titrations	pH and working practically		
1.5 Electronic Structure	Arrangement of electrons in atoms		
1.6 Bonding	Including ionic and covalent bonding.		
1.7 Shapes of Covalent	Explaining the shape of molecules.		
Molecules & Intermolecular	How intermolecular forces arise and affect physical		
Forces	properties.		
1.8 Periodic Trends in Physical	Understand the reasoning behind the trends seen in the		
Properties	periodic table.		
·			
Module 2 – Inorganic Chemistry			
2.1 Redox Chemistry	Understanding oxidation and reduction.		

module 2 morganie onemisny			
2.1 Redox Chemistry	٠	Understanding oxidation and reduction.	
2.2 Inorganic Chemistry – Group 2	•	Detail of the group 2 elements and trends.	
2.3 Inorganic Chemistry – Group 7/17	•	Detail of the group 7 elements and trends.	

Module 3 – Organic Chemistry & Analysis			
3.1 Introduction to Organic Chemistry	•	A general introduction to the basis of organic chemistry.	
3.2 Alkanes	•	Naming and explaining the structure and reactions of alkanes.	
3.3 Alkenes	٠	Naming and explaining the structure and reactions of alkenes.	
3.4 Haloalkanes	٠	Naming and explaining the structure and reactions of haloalkanes.	
3.5 Alcohols	٠	Naming and explaining the structure and reactions of alcohols	
3.6 Aldehydes, Ketones, Acids & Esters	•	Naming and explaining the structure and reactions of aldehydes,	
3.7 Benzene and Aromatic	•	Naming and explaining the structure and reactions of benzene and	
Compounds (self-study topic)		other aromatic compounds	
3.8 Introduction to Organic Synthesis	•	A general introduction to the basis of organic synthesis	
3.9 Modern Analytical Techniques	•	Interpreting spectra of compounds	

Module 4 - Physical Chemistry			
4.1 Energetics	•	Understanding enthalpy.	
4.2 Chemical Kinetics	٠	Understanding the factors that affect the rate of reaction.	
4.3 Chemical Equilibrium • Understand the term equilibrium and how it is affected.		Understand the term equilibrium and how it is affected.	
4.4 Acid-Base Equilibrium	•	Interpret and produce titration curves and understand their	
		reasoning	

CONTENT DETAILS (SYLLABUS)

Mathematics will account for 15 – 20% of the available marks in the examination- **specific mathematics** is highlighted in the syllabus with an asterisk (*) and mentioned in the "prior knowledge" section of the specification.

Required investigations are highlighted in the syllabus and are required to be completed successfully in order to be awarded with a "Practically Confident" commendation at the end of the course.

Learners should be able to demonstrate and apply their knowledge and understanding of:

Spec ID	Assessment statement	Additional Guidance
1.1.1	Understand that the number of protons, neutrons and	
	electrons describes the structure within atoms, and	
	distinguish between atomic number (Z) and mass	
	number (A).	
1.1.2	Construct the nuclear symbol for an atom or ion given	
	the number of protons, neutrons and electrons, and	
	vice versa.	
1.1.3	Understand the definition of isotopes: atoms of an	
	element that have different numbers of neutrons	
	and/or different masses.	
114		
1.1.4	Define relative isotopic mass and relative atomic mass	
1.1.5*	Calculate the relative atomic mass of an element	
	using relative abundances and the relative isotopic	
	masses of its isotopes, as determined by an	
	interpretation of its mass spectrum.	
1.1.6*	Calculate relative molecular mass (Mr) and relative	
	formula mass starting from the relative atomic masses	
	of the constituent elements.	

Module 1 – Foundations of Chemistry 1.1 Atomic Structure, Isotopes & Relative Masses

1.2 Compounds, Formulae and Equations				
Spec ID	Assessment statement	Additional Guidance		
1.2.1	Predict the charge on an ion based on the position			
	of the parent element in the Periodic Table (for			
	Main Group elements in Periods 1, 2, and 3).			
1.2.2	Recall that the following elements in Group 4/14			
	form more than one ion: Sn, Pb.			
1.2.3	Match the name and formula for the following			
	polyatomic ions: NO3–, CO32–, SO42–, PO43–, OH–,			
	and NH4+.			
1.2.4	Construct the formulae of ionic compounds			
	starting from ionic charges.			
1.2.5	Construct balanced chemical equations for (un)-			
	familiar reactions (based on 1.2.4).			

Spec ID	Assessment statement	Additional Guidance
1.3.1	Understand the meaning of the term amount of	
	substance, and recall that the mole, "mol", is the unit	
	for amount of substance.	
1.3.2	Recognise that the number of particles in 1 mol is equal	Constant is in the data book.
	to 6.02 \times 1023 (units: mol–1), and that this is called the	
	Avogadro constant, NA.	
1.3.3	Understand that the mass of 1 mole of a substance is	
	called the molar mass (units: g mol–1).	
1.3.4*	Perform mole calculations involving; amount of	
	substance (mol), mass (g), gas volume (dm3, m3),	
	solution volume (cm3, dm3) & concentration (mol dm-	
	3).	
1.3.5	Recognise that the volume of 1 mol of any gas at	
	Room Temperature & Pressure (RTP) is equal to 24.0	
	dm3 (or 24000 cm3).	
1.3.6*	Use the Ideal Gas Equation: pV = nRT to solve	
	problems involving gases that are not at RTP.	
1.3.7*	Apply mole calculations to balanced chemical	
	equations to calculate the amounts of reactants and	
	products that are involved in a chemical reaction,	
	including calculations:	
	(i) using mass, gas volume, or solution	
	volume/concentration; and	
	(ii) where there is a limiting reagent.	
1.3.8	Understand the meaning of the terms "empirical	
	formula" and "molecular formula", and calculate:	
	(i) an empirical formula from composition by mass or	
	percentage composition, and	

1.3 Mole Calculations

	(ii) a molecular formula from an empirical formula and	
	a relative molecular mass.	
1.3.9*	Understand the meaning of the terms "anhydrous",	
	"hydrated" and "water of crystallisation", and	
	calculate the formula of a hydrated salt starting from its	
	composition by mass or from experimental data.	
1.3.10	Differentiate between the percentage yield of a	
	product in a reaction and the atom economy of the	
	reaction.	
1.3.11*	Calculate the percentage yield of the product in a	
	reaction, and the atom economy of the reaction	
1.3.12	Evaluate the role of atom economy in improving the	
	sustainability of chemical processes.	

1.4 Acids, Bases and Titrations

Spec ID	Assessment statement	Additional Guidance
1.4.1	Recall the Arrhenius definition that:	
	(i) acids release H ⁺ ions in gaueous solution; and	
	(ii) alkalis release OH- ions in aqueous solution.	
1.4.2	Recall the formulae (and names) of the following:	
	(i) Acids – HCl, HNO ₃ , H ₂ SO ₄ , H ₃ PO ₄ and CH ₃ COOH;	
	(ii) Alkalis – NaOH, KOH and NH3.	
1.4.3	Explain the Brønsted-Lowry definition of acids and	
	bases and distinguish between a base and an alkali.	
1.4.4	Apply the Brønsted-Lowry definition of acids & bases to	
	explain qualitatively the difference between strong &	
	weak acids.	
1.4.5	Explain the meaning of the term neutralisation and	
	compose balanced full chemical equations to	
	describe neutralisation reactions between strong /	
	weak acids with the following bases: metal	
	carbonates, metal oxides and metal hydroxides.	
1.4.6	REQUIRED PRACTICAL:	
	Preparation of copper sulphate.	
1.4.7	Employ the relationship between solution	
	concentration, volume, and moles to calculate one of	
	the terms given the other two terms.	
1.4.8	Understand how to prepare a standard solution for use	
	in an acid–base titration, including the equipment	
	required.	
1.4.9	Understand how to perform an acid–base titration,	
	including the equipment required.	
1.4.10*	Carry out and calculate volumetric flask dilutions.	
1.4.11	Apply structured and/or non-structured calculations to	
	determine an unknown concentration, or molar mass,	
	based on experimental results of a titration using (un)-	
	familiar acids and bases.	

1.5 Electronic Structure

Spec ID	Assessment statement	Additional Guidance
1.5.1	Recall that the elements are arranged in terms of increasing atomic number (Z) in the Periodic Table.	
1.5.2	Understand what an atomic orbital is: a region of space, outside the nucleus of an atom, which contains a maximum of two electrons with opposite spins.	
1.5.3	Recognise the number of orbitals that make up each of the s, p and d sub-shells, and conclude how many electrons can fill each of the s, p and d sub-shells.	
1.5.4	Understand that electrons fill orbitals in order of increasing energy (Aufbau Principle).	
1.5.5	Explain that, when two or more orbitals have the same energy, electrons occupy each orbital singly before pairing of electrons occurs (Hund's Rule).	
1.5.6	Recall and draw the shapes of s- and p-orbitals	d- orbitals are not required.
1.5.7	Generate the electron configurations of atoms of the first four Periods given their atomic number, Z.	
1.5.8	Recognise that elements in the Periodic Table are organised into s-, p-, d- and f- blocks.	
1.5.9	Generate the electron configurations of ions derived from elements in the s-, p-, and d-blocks, given the atomic number of the element and the ionic charge (for elements up to $Z = 36$).	
1.5.10	Explain the term first ionisation energy, and the trend in first ionisation energies: (i) across Periods 2 and 3, and (ii) down a Group.	
1.5.11	Explain the term successive ionisation energy and predict the number of electrons in each shell of an atom, and the group to which the element belongs, using successive ionisation energies.	
1.5.12	Explain the trend in atomic radius: (i) across Periods 2 and 3, and (ii) down a Group.	

1.5.13	Recognise that elements in a Period show repeating trends in physical and chemical properties (periodicity) due to their electronic structures.	
1.5.14	Recognise that elements in the same Group have similar chemical properties due to their electronic structures.	

Spec ID	Assessment statement	Additional Guidance
1.6.1	Explain that an ionic bond results from electrostatic attraction between positive and negative ions and use dot-and-cross diagrams [Lewis structures] to represent the bonding in an ionic compound.	
1.6.2	Explain how the physical properties of ionic compounds – such as melting / boiling point, solubility, and electrical conductivity – can be understood in terms of their ionic bonding.	
1.6.3	Explain that a covalent bond results from electrostatic attraction between a shared pair of electrons and the nuclei of the two atoms forming the bond.	
1.6.4	Construct dot-and-cross diagrams [Lewis structures] to represent the bonding in: (i) covalent molecules, including those containing up to a maximum of 6 electron-dense regions around the central atom, and (ii) polyatomic ions containing covalent bonds.	
1.6.5	Differentiate between single, multiple, and dative covalent bonds.	
1.6.6	Explain that metallic bonding results from electrostatic attraction between metal positive ions (cations) and delocalised electrons and use this bonding model to describe and explain the physical properties of giant metallic lattices.	

1.7 Shapes of Covalent Molecules & Intermolecular Forces

Spec ID	Assessment statement	Additional Guidance
1.7.3	Understand the meaning of the term electronegativity, and explain that, when covalently bonded atoms have different electronegativity values, a polar covalent bond results, giving rise to a permanent dipole.	
1.7.4	Use the predictions of VSEPR theory and electronegativity values to deduce whether a covalent molecule is polar or non-polar based on its shape and any permanent dipoles that it contains.	
1.7.5	Explain how intermolecular forces arise for: (i) induced dipole–dipole interactions (London forces), and (ii) permanent dipole– dipole interactions.	
1.7.6	Understand that hydrogen bonding is a force of attraction between the N, O or F atom in one molecule and the H atom of a –NH, –OH or HF group in an adjacent molecule.	
1.7.7	Apply understanding of intermolecular forces to explain: (i) solid structures in simple covalent lattices (halogens, water, noble gases); (ii) anomalous physical properties of NH ₃ , H ₂ O, and HF relative to the heavier congeners; (iii) physical properties of covalent compounds with simple molecular lattice structures.	

1.7 Shapes of Covalent Molecules & Intermolecular Forces

1.8 Periodic Trends in Physical Properties

Spec ID	Assessment statement	Additional Guidance
1.8.1	Apply understanding of covalent bonding to explain	
	how the Group 4/14 elements, carbon and silicon, form	
	giant covalent lattices of atoms and the effect of the	
	structures on their physical properties.	
1.8.2	Apply understanding of covalent bonding to compare	
	and/or contrast the physical properties of the carbon	
	allotropes – diamond, graphite and graphene.	
1.8.3	Combine understanding of bonding (metallic and	
	covalent) theory and intermolecular forces to explain	
	the variation in physical properties of the elements	
	across Period 2 and 3 of the Periodic Table.	

MODULE 2 – INORGANIC CHEMISTRY

Spec ID	Assessment statement	Additional Guidance
2.1.1	Assign an oxidation number to an atom in an element,	
	compound or ion.	
2.1.2	Employ Roman numerals when naming a compound	
	or ion if an atom can have different oxidation numbers.	
2.1.3	Describe the terms oxidation and reduction in terms of	
	changes of oxidation number or electron transfer	
	(electron loss and gain).	
2.1.4*	Balance (un)familiar redox equations using oxidation	
	numbers.	
2.1.5	Create balanced redox equations using given half-	
	reactions (not to include balancing in acidic or basic	
	solution)	
2.1.6	REQUIRED PRACTICAL	
	Understand how to perform a redox titration, including	
	the equipment required.	
2.1.7*	Apply structured and/or non-structured calculations	
	based on experimental results for redox titrations	
	involving MnO4 ⁻ and I2/S2O3 ^{2 @}	

2.1 Redox Chemistry

Spec ID	Assessment statement	Additional Guidance
2.2.1	Recall that the Group 2 elements lose their outer s- electrons in redox reactions to form 2+ ions.	
2.2.2	Recall the relative reactivity of the Group 2 elements with oxygen, water, and dilute acids.	
2.2.3	Explain the trend in reactivity of the elements on descending Group 2 in terms of their 1st and 2nd ionisation energies.	
2.2.4	Describe the application of Group 2 compounds in agriculture and in medicine.	

2.2 Inorganic Chemistry – Group 2

Spec ID	Assessment statement	Additional Guidance
2.3.1	Describe the physical properties of the halogens and explain the trend in their boiling points in terms of intermolecular forces.	
2.3.2	Recall that the Group 7/17 elements gain an electron in redox reactions to form 1– ions.	
2.3.3	Explain the trend in reactivity of the halogens with other halide ions.	
2.3.4	Understand the meaning of the term disproportionation reaction.	
2.3.5	Recall that the reaction of a halogen with water or aqueous sodium hydroxide is an example of a disproportionation reaction.	
2.3.6	Carry out safely and understand that you can identify halides using the reaction of silver ions with aqueous halide ions as an example of a precipitation reaction and write the corresponding ionic equation.	Describe the subsequent reaction of the precipitate with aqueous ammonia to identify the halide ion

2.3 Inorganic Chemistry – Group 7/17

Module 3 – Organic Chemistry

Spec ID	Assessment statement	Additional Guidance
3.1.1	Understand and apply the IUPAC rules of nomenclature for all organic compounds covered in this course.	Up to 10 carbon atoms in a chain.
3.1.2	Define the terms homologous series and functional group.	
3.1.3	Differentiate between the terms: general formula, structural formula, displayed formula, and skeletal formula.	
3.1.4	Differentiate between: (i) an aliphatic compound (straight/branched chain or alicyclic ring) and an aromatic compound;	

3.1 Introduction to Organic Chemistry

	(ii) a saturated compound and an unsaturated compound.	
3.1.5	Recall that structural isomers are molecules with the same molecular formula but different structural formulae and determine possible structural formulae of an organic molecule.	
3.1.6	Differentiate between homolytic and heterolytic bond fission	
3.1.7	Describe a radical as a species with an unpaired electron.	
3.1.8	Employ a curly arrow to represent the movement of an electron pair in either heterolytic bond fission or covalent bond formation.	

3.2 Alkanes		
Spec ID	Assessment statement	Additional Guidance
3.2.1	Recall that alkanes are saturated hydrocarbons that only contain single C-C and C-H bonds.	
3.2.2	Apply VSEPR theory to explain the tetrahedral shape and bond angle around each carbon atom in an alkane.	
3.2.3	Understand the meaning of the term σ - (sigma) bond, and that atoms joined by a σ -bond are free to rotate.	
3.2.4	Explain in terms of London forces the variation in the boiling points of alkanes with carbon-chain length and/or branching.	
3.2.5	Understand and explain the low chemical reactivity of alkanes.	
3.2.6	Describe the complete and incomplete combustion of alkanes, as used in fuels.	
3.2.7	Describe the radical substitution reaction of alkanes with halogens (Cl ₂ or Br ₂), including the mechanism of the reaction.	
3.2.8	Understand the limitations of the radical substitution reaction as a synthetic route to haloalkanes.	

Spec ID	Assessment statement	Additional Guidance
3.3.1	Recall that alkenes are unsaturated hydrocarbons containing a C=C bond.	
3.3.2	Understand that the C=C bond in alkenes comprises a σ -bond and a π -bond and that there is restricted rotation of the π -bond which may lead to geometric isomers.	
3.3.3	Apply VSEPR theory to explain the trigonal planar shape and bond angle around the carbon atoms in the C=C functional group.	
3.3.4	Define stereoisomers as molecules that have the same structural formula, but a different arrangement of the atoms in space, and recognise E/Z and cis-trans isomerism as examples of stereoisomerism.	
3.3.5	Determine E/Z or cis-trans stereoisomers for an organic molecule given its structural formula.	
3.3.6	Apply the Cahn–Ingold–Prelog (CIP) priority rules to identify whether a stereoisomer is E or Z.	
3.3.7	Describe, with experimental details, the addition reactions that alkenes undergo with: (i) hydrogen, (ii) halogens, (iii) hydrogen halides, or (iv) steam.	
3.3.8	Understand the meaning of the term electrophile and derive the mechanism for an electrophilic addition reaction involving an (un)-familiar alkene.	
3.3.9	Apply Markownikoff's rule to predict the distribution of isomers in electrophilic addition reactions between hydrogen halides and unsymmetrical alkenes.	
3.3.10	Describe the addition polymerisation reaction that alkenes and substituted alkenes undergo and deduce the repeat unit of an addition polymer starting from a particular monomer (and vice versa).	
3.3.11	Give examples of how waste polymers may be processed to reduce their environmental impact.	

3.4 Haloalkanes

Spec ID	Assessment statement	Additional Guidance
3.4.1	Recognise that haloalkanes can be hydrolysed by aqueous alkali or water.	
3.4.2	Understand the meaning of the term nucleophile and derive the mechanism of a nucleophilic substitution reaction involving the hydrolysis of a primary haloalkane by aqueous alkali [an SN ₂ mechanism].	
3.4.3	Explain the trend in the rate of hydrolysis of a primary haloalkane as a function of the halogen functional group.	
3.4.4	Understand how to test qualitatively for the identity of the halogen present in a haloalkane.	
3.4.5	Recall that halogen radicals, derived from the CFC family of haloalkanes, are responsible for the breakdown of ozone in the Earth's upper atmosphere, and write a simple mechanism for the reaction between CI radicals and ozone molecules.	

3.5 Alcohols		
Spec ID	Assessment statement	Additional Guidance
3.5.1	Classify alcohols as primary, secondary, or tertiary.	
3.5.2	Explain the polarity of alcohols and apply this understanding to explain the solubility of alcohols in water and their relatively low volatility.	
3.5.3	Understand and explain that alcohols undergo the following reactions: (i) substitution reactions with halide ions to form haloalkanes; (ii) elimination reactions to form alkenes; (iii) combustion reactions.	

Spec ID	Assessment statement	Additional Guidance
3.6.1	Describe and understand that aldehydes and carboxylic acids are formed from the oxidation of primary alcohols, and that the product can be controlled using different reaction conditions.	
3.6.2	Describe and understand that the oxidation of secondary alcohols leads to the formation of ketones.	
3.6.3	Describe and understand that the oxidation of aldehydes results in the formation of carboxylic acids.	
3.6.4	Recognise that tertiary alcohols are resistant to oxidation under these conditions.	
3.6.5	Describe that the reduction of carbonyl compounds with a hydride ion results in the formation of alcohols.	
3.6.6	Derive the mechanism for the nucleophilic addition reaction of an aldehyde or ketone with the hydride ion.	
3.6.7	Describe the use of 2,4-dinitrophenylhydrazine (Brady's reagent) to detect the presence of a carbonyl group (aldehyde or ketone) in an organic compound.	
3.6.8	Describe the use of Tollens' reagent to detect the presence of an aldehyde group in an organic compound.	
3.6.9	Describe the formation of an ester by the reaction of a carboxylic acid or an acid anhydride with an alcohol (esterification).	
3.6.10	Describe the hydrolysis of an ester: (i) in the presence of an acid to give a carboxylic acid and an alcohol, and (ii) in the presence of aqueous alkali to give a carboxylate salt and an alcohol.	
3.6.11	REQUIRED PRACTICAL	
	Safely carry out the synthesis of cyclohexene.	
	Understanding the procedure and practices for using distillation and reflux to prepare and purify an organic solid.	

3.6 Aldehydes, Ketones, Acids & Esters

3.7 Benzene & Aromatic Compounds (Self Study Topic)		
Spec ID	Assessment statement	Additional Guidance
3.7.1	Describe and compare the Kekulé and delocalised	
	model of Benzene.	
3.7.2	Explain the evidence for the delocalisation model	
	using enthalpy changes.	
3.7.3	Be able to name aromatic compounds using IUPAC	
	rules.	
3.7.4	Be able to show (using curly arrows) and explain the	With conc. nitric acid & conc.
	electrophilic substitution of aromatics and the	sulphuric acid; with a halogen
	conditions required.	and halogen carrier; with a
		haloalkane (and the Friedel-
		Crafts reaction)

3.8 Introduction to Organic Synthesis			
Spec ID	Assessment statement	Additional Guidance	
3.8.1	Identify functional groups in an organic molecule and		
	predict the properties and reactions of an organic		
	molecule containing several functional groups.		
3.8.2	Utilise and develop a Spider Diagram summarising all		
	organic reactions covered in the Chemistry UFP course.		
3.8.3	Be able to devise a synthetic route (involving no more		
	than two-steps) from a given reactant to a desired		
	product by applying transformations between the		
	different functional groups studied in the course.		

3.7 Modern Andryfical Techniques		
Spec ID	Assessment statement	Additional Guidance
3.9.1	REQUIRED PRACTICAL	
	Safely carry out and understand how to identify	
	organic compounds.	
3.9.2	Interpret the infrared spectrum of an organic	Infrared absorption data are
	compound to identify the presence of the following	given in the data book
	functional groups:	
	(i) the OH group in an alcohol from the absorption	
	peak of the O–H bond;	
	(ii) the carbonyl group of an aldehyde or ketone from	
	the absorption peak of the C=O bond;	
	(iii) the COOH group of a carboxylic acid from the	
	absorption peak of the C=O bond and the broad	
	absorption peak of the O–H bond, and	
	(iv) the C=C group in an alkene from the absorption	
	peak of the C=C bond.	
3.9.3	Interpret the mass spectrum of an organic compound	
	in order to:	
	(i) determine its molecular mass from the molecular ion	
	peak;	

	(ii) analyse fragmentation peaks in order to distinguish between different structures.
3.9.4	Deduce the structure of an organic molecule from a
	combination of analytical data such as its: elemental
	analysis, mass spectrum and infrared spectrum.

MODULE 4 – PHYSICAL CHEMISTRY

4.1 Energetics		
Spec ID	Assessment statement	Additional Guidance
4.1.1	Define the terms: (i) standard conditions and standard states; (ii) enthalpy change of reaction (Δ_r H), enthalpy change of formation (Δ_r H), enthalpy change of combustion (Δ_c H), and enthalpy change of neutralisation (Δ_n H).	
4.1.2	Differentiate between enthalpy changes which are exothermic (Δ H, negative) or endothermic (Δ H, positive).	
4.1.3	Construct an enthalpy profile diagram to illustrate the activation energy for a reaction, as well as the difference in the enthalpy of reactants compared with that of the products.	
4.1.4	Explain how enthalpy changes associated with the breaking and making of chemical bonds result in a chemical reaction being either exothermic or endothermic.	
4.1.5*	Define the term (average) bond enthalpy, and calculate an enthalpy change of reaction, or related quantities, using values for average bond enthalpy.	
4.1.6	REQUIRED PRACTICAL Understand the techniques and procedures used to calculate enthalpy changes directly from temperature measurements, starting from appropriate experimental results, applying the equation $q = m c \Delta T$.	Equation given in the data book
4.1.7	Understand the techniques and procedures employed to determine enthalpy changes indirectly (Hess' Law).	
4.1.8	Apply Hess' law to determine the enthalpy change of a reaction from: (i) enthalpy changes of combustion,	Enthalpy cycles or thermochemical equations may be employed to demonstrate Hess' Law.

	(ii) enthalpy changes of formation, or(iii) unfamiliar enthalpy changes.	
4.1.9	Understand that lattice enthalpy (AH negative) refers to the process in which gaseous ions combine to form a solid ionic lattice and is a measure of ionic bond strength.	
4.1.10*	Use a Born–Haber cycle to calculate the lattice enthalpy of a simple ionic solid.	It is not required to construct the Born-Haber cycle itself.
4.1.11*	Understand the terms enthalpy change of solution and enthalpy change of hydration and use a Born–Haber cycle with two of the enthalpy changes (enthalpy change of solution, enthalpy change of hydration of an ion, and lattice enthalpy) to calculate the third enthalpy change term.	
4.1.12	Explain qualitatively the effect of ionic charge and ionic radius on:	

4.2 Chemical Kinetics		
Spec ID	Assessment statement	Additional Guidance
4.2.1	REQUIRED PRACTICAL	
	Understand what is meant by the term rate of reaction, and how to measure and calculate a rate of reaction by monitoring how a physical quantity changes with time.	
4.2.2	Understand what is meant by collision theory and describe qualitatively the effect of concentration and pressure changes (for gases) on the rate of a reaction in terms of the frequency of collisions.	
4.2.3	Explain qualitatively, using a Boltzmann distribution curve, the effect of temperature change on reaction rate and its relevance to activation energy.	
4.2.4	Explain the role of a catalyst in a chemical reaction and interpret catalytic behaviour in terms of a Boltzmann distribution curve.	
4.2.5	Differentiate between a heterogeneous catalyst and a homogeneous catalyst, giving examples.	
4.2.6	Understand the economic and environmental importance of catalysis in chemical processes.	

4.2.7	Deduce the instantaneous rate of a reaction from a concentration-time graph derived from experimental results.	
4.2.8	Understand the meaning of the term reaction order and deduce the reaction order for a particular reactant:	
4.2.9	Derive from reaction orders the rate equation for a chemical reaction.	
4.2.10*	Understand the meaning of the term rate constant and how to calculate a rate constant including its units.	
4.2.11*	Understand the term half-life and calculate the half-life of a first-order reaction from a concentration–time graph.	
4.2.12	Understand the Arrhenius relationship and how it describes the effect of a temperature change on the rate of a reaction.	

4.3 Chemical Equilibrium		
Spec ID	Assessment statement	Additional Guidance
4.3.1	Understand how a dynamic equilibrium arises in a closed system.	
4.3.2*	Deduce an expression for the equilibrium constant, Kc, for a homogeneous chemical reaction and calculate the value of Kc (including its units) from equilibrium concentrations.	
4.3.3*	Calculate the amount of reactants and products present at equilibrium, given appropriate data.	
4.3.4	Estimate the position of equilibrium from the magnitude of Kc.	
4.3.5	Apply Le Chatelier's Principle to predict the effect on the position of equilibrium and the value of Kc of the following changes: (i) temperature; (ii) concentration or pressure; (iii) addition of a catalyst.	
4.3.6	Explain, using Le Chatelier's Principle, why chemists may need to select optimum conditions for an industrial chemical reaction that involve a compromise between chemical equilibrium and reaction rate.	

4.4 Acid-Base Equilibrium		
Spec ID	Assessment statement	Additional Guidance
4.4.1	Understand the meaning of the term conjugate acid- base pair and identify the conjugate acid-base pairs in a chemical reaction.	
4.4.2*	Define the term pH and calculate pH for a strong acid.	
4.4.3	Understand that the acid dissociation constant Ka describes the extent of dissociation of a weak acid in solution and deduce an expression for Ka.	
4.4.4*	Calculate Ka for a weak acid, given appropriate data.	
4.4.5	Understand the practical uses for buffers.	
4.4.6	Define and use the ionic product of water Kw. [the value of Kw at 25°C is given in the data book	
4.4.7*	Calculate the pH of a solution for: (i) a weak monobasic acid; (ii) a strong base.	
4.4.8	Explain the key features of titration curves involving strong and weak acids and bases.	
4.4.9	Explain the role of an indicator in a titration and be able to select an appropriate indicator for a given titration using suitable information.	

COURSE ASSESSMENT

ASSESSMENT OBJECTIVES

Assessment objectives (AOs) are the same across all Level 3 Science specifications and all exam boards. The Chemistry UFP will also place a stronger emphasis on the use of chemistry in an international context compared to other Level 3 qualifications.

Objective	Objective Detail	Overall Course Weighting
	Demonstrate knowledge and understanding of scientific ideas,	
	processes, techniques and procedures	
AO1	scientific evidence and concepts	20 – 25%
	scientific methods and systems	
	scientific terminology	
	logical presentation of scientific information	
	Apply knowledge and understanding and use:	
AO2	scientific evidence and concepts	30- 35%
	scientific methods and systems	
	scientific terminology to transfer information efficiently	
	suitable logical steps are evident to present scientific information	
	Analyse, interpret and evaluate scientific information, ideas, and	
	evidence, including in relation to issues, to:	05 200
AO3	aim research questions and predictions	25 - 30%
	cientific methods and systems	
	scientific explanations of concepts, projects, and investigations	
	Demonstrate the appropriate research, experimental skills, and personal	
	skills necessary to carry out insightful and ethical investigations and	
	presentations:	
404		15 – 20%
A04	develop and apply 21st century communication skills	
	become critically aware, as global citizen, of the ethical implications of	
	using science and technology	
	carry out practicals in groups effectively	

Course Element Information			Assessment Objective Weighting				
Type of Assessment	Name of Assessment	Overall Course %	AO1	AO2	AO3	AO4	
MCQ Exam	Basics of Science	7					
MCQ Exam	Beyond Basics	13	30 – 40%	40 – 50%	20 – 30%		
Exam	Written Exam	40					
Coursework	Poster	10			45 – 55%	45 – 55%	
Coursework	Presentation	10		40 - 50%	30 - 40%	30 - 40%	
Controlled Assessment	Practical Skills	20		40 – 50%	30 - 40%	30 – 40%	
Practical Skills	Practically Confident	n/a					
Totals (Considering Weighting)		100	20 – 25%	30 – 35%	25 – 30%	15 – 20%	

ASSESSMENT OBJECTIVE WEIGHTING PER COURSE ELEMENT

N.B. In the Examinations Mathematics will account for 10 – 15% of the available marks.

ASSESSMENT STRUCTURE OVERVIEW

Chemistry UFP involves five methods of assessment:

A scientific research poster – relating a subject matter from Chemistry to another subject.

A presentation – Presenting a selected Chemistry subject.

 $3\ \text{examination}\ \text{papers}\ -\ 2\ \text{Multiple}\ \text{Choice}\ \text{Papers}\ \text{and}\ \text{one}\ \text{written}\ \text{exam.}$

A controlled assessment - a practical write up of a practical given to you.

A "Practically Confident" teacher assessment of your practical skills throughout the course.

Assessment Name	% Weighting	Marks Available	Additional Information
Coursework 1 - Poster	10	36	Relating a subject matter from Chemistry to another subject
Coursework 2 - Presentation	10	24	Presenting a selected Chemistry subject.
Controlled Assessment – Practical Skills	20	36: 6 marks awarded by the teacher on the day of the experiment and 30 marks awarded through the exam questions	A practical will be done under exam conditions where the health and safety skills and the competency of currying the experiment will be assessed for the first day and the second-day examination questions will be answered under exam conditions using DigiExam platform.
Practically Confident	n/a	n/a	Required practicals assessed by your teacher throughout the course.
Exam Paper 1 – Basics of Chemistry	7	20	 Multiple Choice Paper on Modules 1 & 2 only. 30 minutes.
Exam Paper 2 – Beyond the Basics of Chemistry.	13	30	 Multiple Choice Paper on all topics. 45 minutes.
Exam Paper 3 – Written Paper	40	90	 Long and short answer questions on all topics (including practical applications mentioned in the syllabus and self-study topic) 2 hour 45 minutes.

An overall grade in Chemistry is given at the end of the course.

ASSESSMENTS Coursework 1 - Poster

The Poster topics must be different for each science and based on the science under study, however, the assessment requirements are the same for biology, chemistry and physics.

The poster is worth 10% of the course and consists of the following stages:

Students pick an appropriate subject (in the form of a specific question) that relates a topic from the science being studied to a cross curricular issue, some examples are:

Chemistry - Why is chemistry required for XXXXX?	Business / Economics - How has XXXXXX shaped the economy?
Physics - Why does physics provide answers to XXXXXX?	Maths - How maths and XXXXXX aim to find solutions.
Biology - How can Biology help XXXXXX?	History - What in history has shaped XXXXXX?
General Science - How has working together	Law - How does law
helped solve XXXXX?	shape XXXXX?

A short-written article of why the topic was chosen by the student and why it is important to others.

A written report of 1500 words that allows you to discuss research in more detail (not including references).

An abstract (a summary of the key points of your research) of 250 words.

Production of a digital A1 sized poster using the information from your essay and including appropriate referencing of sources and an abstract that summarises your research.

Your written reflections regarding - on your production of the poster; the sources used and the extending the ideas of your research.

The mark scheme, documents that need to be provided and additional information for the poster is in the appendix of this document.

Coursework 2 – Presentation

The Presentation is worth 10% of the course and consists of the following stages:

Students will be given a transition element to research by their subject teacher from the 4th – 6th periods only.

An 8 – 12-minute presentation should be produced and given that answers the following:

- Deduce the electron configurations of atoms and ions.
- Shown the existence of more than one oxidation state.
- Show use of the terms d-block elements and transition elements.
- Show the formation of coloured ions and include balanced equations with state symbols.
- Identify and use the terms "deprotonation reaction" and "ligand-substitution" reaction.
- Show the catalytic behaviour of the transition elements and/or their compounds.
- Compare the redox behaviour in the reactions of transition elements.

Your reflections on your production of the presentation, the used sources and the general ideas of your presentation will take place verbally after your presentation has been given.

The mark scheme, documents that need to be provided and additional information for the presentation is in the Assessment Guidance document.

.Controlled Assessment – Practical Writeup

A practical will be performed by the student under exam conditions the first day and the second students will answer exam questions, under exam conditions using the DigExam platform based on the following:

- Carrying out a risk assessment.
- Drawing an appropriate table.
- Drawing an appropriate graph.
- Writing a conclusion.
- Evaluating the method.
- Manipulating data (in addition to their data row data will be provided)

The mark scheme, documents that need to be provided and additional information for the practical writeup is in the Assessment Guidance document.

Practically Confident

Students will achieve a "Practically Confident" grade upon successful completion of the required practical procedures and analysis during the course.

Students will be awarded with a "Practically Confident Shown" grade if they meet the requirements of the required practicals as judged by their subject teacher – please see "required Investigations" section for more details.

The requirements for each practical to be deemed as "Confidence Shown" shall be that the practical has been:

Carried out effectively (either in a group or individually) – Teacher judgment based on raw data. Analysed correctly – Teacher judgement based upon viewing appropriate presentation of data in tabular and/or graph form (where appropriate).

Evaluated appropriately – Teacher judgment based upon written evaluation of procedure after carrying out the investigation.

Teachers will be given a spreadsheet to record the date of when the 3 criteria above for each practical have been reached.

This will then be monitored by your teacher so as the "practically confident" grade is given or not stated.

Required Practicals

Chemistry is the study of life. Biologists attempt to understand the living world at all levels using many different methods and procedures. Students are expected to gain an understanding of how a scientific investigation is carried out.

The following practicals are a requirement of the course.

Students must complete all the below practicals successfully throughout the course in order to be awarded with the "Practically Confident Shown" grade to be awarded.

Students who miss or do not reach the requirements mentioned in the section for the "Practically Confident" material are responsible for arranging another suitable time with their teacher to show they have reached the criteria.

The required practicals

Preparation of copper sulphate (or similar).

Successfully carrying out of a redox titration.

Identifying Organic compounds.

Measuring the enthalpy change.

Measuring the rate using a single indicator (e.g., gas volume)

Organic synthesis (e.g., cyclohexene). Exam Papers

Exam Paper 1 – Basics of Chemistry

This paper is a multiple-choice paper and will mostly consist of AO1 questions.

It will be under controlled conditions, worth 20 marks and last for 30 minutes.

It will assess only:

- 1.1 Atomic Structure, Isotopes & Relative Masses
- 1.2 Compounds, Formulae and Equations
- Mole Calculations 1.3
- Acids & Bases and Titrations 1.4
- 1.5 Electronic Structure
- Bondina 1.6
- 1.7 Shapes of Covalent Molecules & Intermolecular Forces
- 1.8 Periodic Trends in Physical Properties
- 2.1 **Redox Chemistry**
- 2.2 Inorganic Chemistry – Group 2
- Inorganic Chemistry Group 7/17 2.3

Exam Paper 2 – Beyond the Basics of Chemistry

This paper is a multiple-choice paper and will mostly consist of AO1& AO2 questions.

It will be under controlled conditions, worth 30 marks and last for 45 minutes.

It will assess all areas of the course (including practical applications mentioned in the syllabus and selfstudy topic).

Exam Paper 3 – Written Paper

This paper is a long and short answer questions paper and will mostly consist of AO2 & AO3 questions.

It will be under controlled conditions, worth 90 marks and last for 2 hours 15 minutes.

It will assess all areas of the course (including practical applications mentioned in the syllabus and selfstudy topic).

PLANNING Suggested Teaching Plan

Spec ID	Торіс	Recommended Hours	Recommended Teaching Month (September Start)	Recommended Teaching Month (Fast Track)
1.1	Atomic Structure, Isotopes & Relative Masses	5	September	January
1.2	Compounds, Formulae and Equations	5	September	January
1.3	Mole Calculations	10	September	January
1.4	Acids & Bases and Titrations	10	September / October	January
1.5	Electronic Structure	5	October	January
1.6	Bonding	5	October	January
1.7	Shapes of Covalent Molecules & Intermolecular Forces	5	October / November	January / February
1.8	Periodic Trends in Physical Properties	5	November	January / February
2.1	Redox Chemistry	5	November	February
2.2	Inorganic Chemistry – Group 2	5	November / December	February
2.3	Inorganic Chemistry – Group 7/17	5	December	February
Review Basics o	& Prepare for Exam Paper 1 – f Chemistry	(5)	December / January	Review & Prepare for Exam Paper 1 – Basics of Chemistry
3.1	Introduction to Organic Chemistry	5	December / January	February / March
3.2	Alkanes	5	January	March
3.3	Alkenes	5	January	March
3.4	Haloalkanes	5	January	March
3.5	Alcohols	5	February	March
3.6	Aldehydes, Ketones, Acids & Esters	5	February	March / April
3.7	Benzene and Aromatic Compounds	(5 self-study topic)	n/a	n/a

3.8	Introduction to Organic Synthesis	5	February / March	March / April
3.9	Modern Analytical Techniques	5	March	April
4.1	Energetics	10	March	April
4.2	Chemical Kinetics	10	March / April	April
4.3	Chemical Equilibrium	5	April	Мау
4.4	Acid-Base Equilibrium	10	April / May	Мау
Review	& Prepare for Exam Papers 2 & 3	(5)	Мау	Мау
			Exam Papers 2 & 3	Exam Papers 2 & 3

Total = 140 Hours teacher contact time minimum.

Students are expected to supplement this contact time with revision, completion of homework and extra reading around the subject.

Any relevant information that demonstrates extended reading may be awarded credit in the exam if no other creditable information is provided.

COURSEWORK DEADLINES & SUGGESTED PLANNING

All assessment work will be marked centrally and anonymously.

All coursework documents need to be submitted to your teacher digitally (MS Office) for checking on similarity detection software and for marking and moderation.

A first draft of your coursework (not the controlled assessment) can be handed to your teacher for feedback if received within the deadline.

Missing the deadline is not acceptable – if you miss the teacher feedback deadline the teacher reserves the right to not give feedback before the final hand in date.

The final deadline is when work needs to be uploaded for moderation and marking, therefore, if this deadline is missed the teacher reserves the right to only award on what has been seen or award 0 marks.

Coursework	Task in Coursework	Deadline for September Start	Deadline for Fast Track	Notes
Coursework 1 – Poster	Selecting an appropriate Question.	Before October Half – Term	Before February Half – Term	This should be discussed with your teacher before moving onto other tasks.
Coursework 1 – Poster	First draft of Coursework completed so far (not including reflections).	Last Week in November	Last Week in February	Your teacher will mark what is provided and give verbal or written feedback.
Coursework 1 – Poster	Coursework completed and digitally sent.	January – the week of exam paper 1.	March – the week of exam paper 1.	Requirements of documents to be provided are in the appendix of this document.
Coursework 1 – Poster	Reflections	End of the week of exam paper 1.	End of the week of exam paper 1.	To be completed after the poster hand in.

Coursework 2 – Presentation	Research topic given.	Before February Half – Term	After Paper 2 & 3.	This should be confirmed with your teacher before moving onto other tasks.
Coursework 2 – Presentation	First draft of Coursework completed so far (not including reflections).	First week in March.	1 week after Paper 2 & 3.	Your teacher will mark what is provided and give verbal or written feedback.
Coursework 2 – Presentation	Coursework completed, digitally sent and presented.	First week after Easter vacation.	2 weeks after Paper 2 & 3.	Requirements of documents to be provided are in the appendix of this document.
Controlled Assessment – Practical Skills Experiment	Practical is performed by students under exam conditions	Last week of March (One day only)	Last week of March (One day Only)	This will be set from your teacher during a timetabled lesson
Controlled Assessment – Practical Skills Exam Paper based on the practical performed above	Exam paper completed under exam conditions using DigiExam platform.	Last week of March (One day only)	Last week of March (One day only)	Exam paper will be administered under exam conditions using the DigiExam platform using your own electronic devises (laptop or pad).

For these assessment elements of the course, marks for each element of the marking criteria will be awarded on a points system. Each "Seen Expansively" will be worth three points, each "seen clearly" will be worth two points, each "Seen, but vaguely" will be worth one point, and each "Not Seen" is not worthy of credit.

	Points award	ded			
Marking Statement	Not Seen	Seen, but vaguely	Seen clearly	Seen expansively	Comment as to why points were awarded
	0	1	2	3	•

SUPPORT & INFORMATION

Suggested Reading Material

Textbook Name & Author	Front Cover	Publisher & Edition
Advanced Chemistry for you LAWRIE RYAN		OUP Oxford University Press 2 nd Edition
A Level Chemistry for OCR A CGP Books	OCRA A Level Year 1 & A 5 Chemistry Evan Board, OCR A Y 1 he curve A Level Year 2 Chemistry Evan Board, OCR A A Level Year 2 Chemistry Evan Board, OCR A	CGP Books 1 st Editions
Advanced Chemistry (Advanced Sciences) CLUGSTON & FLEMMING	<text><text><text></text></text></text>	Oxford University Press 2 nd Edition

Chemistry - Macmillan Foundations Series LEWIS & EVANS

Macmillan Education

5th Edition

ACADEMIC HONESTY

All work should be your own and you may be required to declare that it is indeed all your own work.

All work will be checked by the similarity checker and therefore must be provided in a digital format.

If it is believed that the work is not your own due to it being different to other pieces of work and / or scores highly in the similarity checker, you may be asked to redo the work, attend a viva or be given zero marks for that particular area.

EAL (ENGLISH AS AN ADDITIONAL LANGUAGE)

Students can access the English support offered in their respective CATS College.

Lessons are taught using a Content and Language Integrated Learning (CLIL) approach, so that students can also develop their English language skills.

The course has been designed for international students and therefore, even though the course is conducted in the English language, opportunities to award skills have been considered and teachers are trained in teaching EAL students.

Most UFP students will be expected to attend an EAP programme as Universities will require a workable understanding of the English Language.

SEND (SPECIAL EDUCATIONAL NEED AND DISABILITIES)

Students can discuss any SEND concerns in their respective CATS College.

Support and extra time will be granted through the SEND coordinator at the respective CATS College in conjunction with the UFP board.

UFP Chief Examiner for Science subjects

Guildhouse school 43-45 Bloomsbury Square London WC1A 2RA

Tel: +44 2045761796

ianagnostopoulos@guildhouseschool.com

Director of CATS UFP

Mob: +44 7891674841

jhawkins@catsglobalschools.com

APPENDICES

Appendix A – Marking Rubric – Coursework 1 (Poster)

Individual and unique posters linking the science with another curriculum aspect. The poster is worth 10% of the whole course.

There are 5 documents to be submitted by the student: Engage: max 250 words Abstract: max 250 words Report: 1500 words **Produce: Poster A1** Reflect: max 250 words

For these assessment elements of the course, marks for each element of the marking criteria will be awarded on a points system. Each "Seen Expansively" will be worth three points, each "seen clearly" will be worth two points, each "Seen, but vaguely" will be worth one point, and each "Not Seen" is not worthy of credit.

Criteria	Total Available Marks	Weighting of poster (%)	Requirements of work provided by student	Marking Responsibility
Engage	4	11	A report of up to 250 words sent in word processed document, titled "Engage".	External Marker
Abstract	4	11	A 250-word maximum report sent in word processed document, titled "Abstract"	External Marker
Report	12	33	A 1500-word report sent in word processed document (references not included in word count), titled "Report".	External Marker
Reference	4	11	Included in the document titled "Report"	External Marker
Produce	8	22	Aa visually appealing A1 poster including all or most of the elements from the "Report" and "Abstract".	External Marker
Reflect	4	11	A 250-word report sent in word processed document, titled "Reflect"	External Marker
Totals	36	100	n/a	1

The coursework is separated into the following marking criteria that are marked individually:

Engage Marking Criteria Form for Teachers (can be shared with students)

The extent to which the student engages with topic exploration and personalization.

Curiosity is recognized through explaining personal interests and showing evidence of curiosity or initiative.

An explanation of why the topic was chosen and how it is relevant to the science studied should be included.

Engage Marking Criteria						
		Points				
Marking Statement	Not Seen	Seen, but vaguely	Seen clearly	Seen expansively	Comment as to why points were awarded	
Student created question without excessive guidance from teacher. Composed in the student's own words. Clear and defined					•	
Question is specific & obviously cross curricular. Physics concept/s set-in real-life scenario/s Question has potential to achieve a response at or beyond level 3 qualifications demand					•	
Explanation of why question is relevant to student. Conveys a sense of curiosity and/or initiative from the student					•	
Explanation of why question is important to others as well as student. Identified the benefit of this understanding to users of the technology					•	

-

Mark to Award	Criteria
4	11-12 points awarded
3	 8-10 points awarded
2	 5-7 points awarded
1	 3-4 points awarded
0	 2 or fewer points scored on the table above,

Report Criteria Form for Teachers (can be shared with students)

The extent to which the student informs us of the relationship to answer the question asked.

Report Marking Criteria					
	Points awarded				
Marking Statement	Not Seen	Seen, but vaguely	Seen clearly	Seen expansively	Comment as to why points were awarded
Evidence Seen that is specific to question. Response is relevant to the question and includes relevant science that develops a compelling narrative.					•
Evidence shows at least 2 quantifiable relationship. For at least 2 quantifiable relationships: Variables identified Explanation of causality Identification of optimisation for its application					•
Evidence includes relevant data in the form of tables and graphs. Supporting data for the 2 or more identified quantifiable relationships is included in the form of tables and graphs.					•

Mark to Award	Criteria
12	• 9 points awarded & Below 1,500 Words.
11	• 9 points awarded & Above 1,500 Words.
10	• 8 points awarded & Below 1,500 Words.
9	• 8 points awarded & Above 1,500 Words.
8	At least 6 points awarded & Below 1,500 Words.
7	At least 6 points awarded & Above 1,500 Words.
6	At least 4 points awarded & Below 1,500 Words.
5	• At least 4 points awarded & Above 1,500 Words.
4	• At least 2 points awarded & Below 1,500 Words.
3	• At least 2 points awarded & Above 1,500 Words.
2	 1 point awarded & Below 1,500 Words.
1	 1 point awarded & Above 1,500 Words.
0	 None of the other levels are applicable.

Reference Marking Criteria Form for Teachers (can be shared with students)

The extent to which the student displays the choice of sources used.

Reference Marking Criteria					
		Points			
Marking Statement	Not Seen	Seen, but vaguely	Seen clearly	Seen expansively	Comment as to why points were awarded
There are at least 4 appropriate references 4 or more different relevant sources used				Using Harvard style	•
Sources chosen demonstrate a critical concern for quality and impartiality					•
Has appropriate "in body" Referencing "in body" refencing can be clearly traced to its source					•
Has appropriate bibliography in alphabetical order*					•

Relevant Level and marked awarded based on above completed form:

Mark to Award	Criteria				
4	 11-12 points awarded 				
3	 8-10 points awarded 				
2	 5-7 points awarded 				
1	 3-4 points awarded 				
0	 2 or fewer points scored on the table above, 				

*Alphabetical order is a requirement for the "Seen Expansively" criterion. If the list is logically organised in a different way, the "seen clearly" can be awarded.

Abstract Marking Criteria Form for Teachers (can be shared with students)

Abstract Marking Criteria Points awarded Seen **Marking Statement** Not Seen Seen, but Seen Comment as to why clearly vaguely expansively points were awarded Abstract summarises main • findings from the research. Abstract clearly and succinctly identifies the specific research area, the evidence collected, the conclusions draw and the benefit of application

The extent to which the student summarises the research succinctly.

Mark to Award	Criteria					
4	3 points awarded & Below 250 Words.					
3	3 points awarded & Above 250 Words 2 points awarded & Below 250 Words.					
2	2 points awarded & Above 250 Words 1 point awarded & Below 250 Words.					
1	1 point awarded & Above 250 Words.					
0	None of the other levels are applicable.					

Produce Marking Criteria Form for Teachers (can be shared with students)

The way the student produces a digital A1 sized poster including the elements of the Report, References and Abstract.

Produce Marking Criteria					
Points awarded					
Marking Statement	Not Seen	Seen, but vaguely	Seen clearly	Seen expansively	Comment as to why points were awarded
Poster includes a comprehensive synopsis of the report that is both engaging and informative. Readers are given guidance as how to find out more.					•
The formatting of text and headings are appropriate.					•
The layout of the poster aids understanding.					•
Spelling, Punctuation and appropriate terminology is used.					•

Mark to Award	Criteria
8	 12 points awarded
7	11 points awarded
6	 9-10 points awarded
5	 7-8 points awarded
4	 5-6 points awarded
3	 3-4 points awarded
2	2 points awarded
1	1 point awarded
0	None of the other levels are applicable.

Reflect Marking Criteria Form for Teachers (can be shared with students)

The extent to which the student reflects on their poster and their research. This should be written by the student after the hand in of the poster.

Reflect Marking Criteria					
Points awarded					
Marking Statement	Not Seen	Seen, but vaguely	Seen clearly	Seen expansively	Comment as to why points were awarded
Strengths and limitations regarding their poster content and design are mentioned.					•
Strengths and limitations regarding their data are mentioned.					•
Improvements are suggested for both the poster content and design					•

Mark to Award	Criteria				
4	8-9 points awarded				
3	6-7 points awarded				
2	 4-5 points awarded 				
1	2-3 points awarded				
0	 None of the other levels are applicable. 				

Appendix B – Marking Rubric – Coursework 2 (Presentation)

Individual and unique presentation in the given topic of an elementary particle. The presentation is worth 10% of the whole course.

For these assessment elements of the course, marks for each element of the marking criteria will be awarded on a points system. Each "Seen Expansively" will be worth three points, each "seen clearly" will be worth two points, each "Seen, but vaguely" will be worth one point, and each "Not Seen" is not worthy of credit.

The coursework is separated into the following marking criteria that are marked individually:

Criteria	Total Available Marks	Weighting (%)	Requirements of work provided by student	Marking Responsibility
Inform	8	33	A combination of the presentation and the PowerPoint used during the oral presentation.*	External Marker
Produce	4	17	The PowerPoint presentation used during the oral presentation.*	External Marker
Reference	4	17	The PowerPoint presentation used during the oral presentation.*	External Marker
Deliver	4	17	Seen during presentation.	Teacher & other member of science staff.
Reflect	4	17	A reflection document created after the presentation has occurred	Teacher & other member of science staff.
Totals	24	100	n/a	

*Students' notes used in the presentation can also be submitted as evidence towards these marking criteria,

Inform Marking Criteria Form for Teachers (can be shared with students)

The extent to which the student researches the given topic.

Inform Marking Criteria Form for Teachers (can be shared with students)

Inform Marking Criteria					
		Points	awarded		
Marking Statement	Not Seen	Seen, but vaguely	Seen clearly	Seen expansively	Comment as to why points were awarded
A detailed overview of how elementary particles are classified.					•
Explained detail of either: Different quarks & hadrons. Neutrinos as a fundamental particle. Fundamental forces					•
Explained detail of either: Proton & Neutron decay. Beta decay. The mediation of fundamental forces.					•
Included examples and situations relating to the above.					•

Relevant Level and marked awarded based on above completed form:

Mark to Award	Criteria
8	 12 points awarded
7	11 points awarded
6	 9-10 points awarded
5	 7-8 points awarded
4	 5-6 points awarded
3	 3-4 points awarded
2	2 points awarded
1	1 point awarded
0	 None of the other levels are applicable.

Note: The PowerPoint should not have so much detail that it becomes visually unappealing – students will need to add in the missing information in their verbal presentation to gain the "seen expansively" for the Inform criterion.

Produce Marking Criteria Form for Teachers (can be shared with students)

The way the student produces the presentation.

Produce Marking Criteria					
		Points awarded			
Marking Statement	Not Seen	Seen, but vaguely	Seen clearly	Seen expansively	Comment as to why points were awarded
The formatting of text and headings is sensible.					•
The layout and balance of visuals and text is sensible and logical.					•
Spelling, Punctuation and appropriate terminology is used.					•

Mark to Award	Criteria
4	8-9 points awarded
3	6-7 points awarded
2	 4-5 points awarded
1	2-3 points awarded
0	None of the other levels are applicable.

Reference Marking Criteria Form for Teachers (can be shared with students)

The extent to which the student displays the choice of sources used.

Referencing should be completed in the Harvard style.

*N.B. While Wikipedia is a useful website for gathering preliminary information, it should not be used as a reference and would not count as "appropriate".

Reference Marking Criteria					
		Points	awarded		
Marking Statement	Not Seen	Seen, but vaguely	Seen clearly	Seen expansively	Comment as to why points were awarded
There are at least 4 appropriate references					•
Include both online and offline (or journal) references					•
Has appropriate "in body" Referencing					•
Has appropriate bibliography in alphabetical order					•

Mark to Award	Criteria		
4	 11-12 points awarded 		
3	 8-10 points awarded 		
2	 5-7 points awarded 		
1	 2-4 points awarded 		
0	None of the other levels are applicable.		

Deliver Marking Criteria Form for Teachers (can be shared with students)

Deliver Marking Criteria Points awarded Not Seen Marking Statement Seen, but Seen Seen Comment as to why points were awarded vaguely clearly expansively Speaks Clearly and at an understandable pace. Question on an aspect of • the science mentioned in the presentation is answered. Not just reading out the text • on presentation. Shows confidence through • eye contact, etc.

The way the student delivers their presentation on the subject matter.

Relevant Level and marked awarded based on above completed form:

Mark to Award	Criteria
4	 11-12 points awarded
3	 8-10 points awarded
2	 5-7 points awarded
1	 3-4 points awarded
0	 2 or fewer points scored on the table above,

Reflect Marking Criteria Form for Teachers (can be shared with students)

The extent to which the student reflects on their presentation.

Reflect Marking Criteria					
		Points awarded			
Marking Statement	Not Seen	Seen, but vaguely	Seen clearly	Seen expansively	Comment as to why points were awarded
Reflection on both the strengths and limitations of their presentation is discussed.					•
Improvements are suggested for presentation skills.					•

Relevant Level and marked awarded based on above completed form:

Mark to Award	Criteria
4	 6 points awarded
3	 5 points awarded
2	 3-4 points awarded
1	2 points awarded

A data booklet will be provided during the exam.

